AUTOMATIC CHANNEL ROUTING USING MUSICAL INSTRUMENT LINKED DATA

Nicholas Jillings and Ryan Stables
Digital Media Technology Lab
Birmingham City University
Birmingham, B4 7XG, UK
{nicholas.jillings, ryan.stables}@bcu.ac.uk

ABSTRACT
Audio production encompasses more than just mixing a series of input channels. Most sessions involve tagging tracks, applying audio effects, and configuring routing patterns to build sub-mixes. Grouping tracks together gives the engineer more control over a group of instruments, and allows the group to be processed simultaneously using audio effects. Knowing which tracks should be grouped together is not always clear as this involves subjective decisions from the engineer in response to a number of external cues, such as the instrument or the musical content. This study introduces a novel way to automatically route a set of tracks through groups and subgroups in the mix. It uses openly available linked databases to infer the relationship between instrument objects in a DAW session, utilising graph theory and hierarchical clustering to obtain the groups. This can be used in any intelligent production environment to configure the sessions’ routing parameters.

1. INTRODUCTION
Audio production is a complex task with many decisions needed to be undertaken by the engineers to achieve an end mix. If only gain coefficients exist, then a mix can be summarised as an \(n \)-dimensional vector, where \(n \) is the number of channels [1]. Introducing digital effects, panning and routing adds even more complexity to this model. Grouping allows the engineer to create sub-mixes, which themselves be mixed further into the final mix space, effectively partitioning the mix-space.

This paper introduces a novel method to automatically group a set of given tracks based on their instrument metadata. The paper will give a brief overview of intelligent systems in section 2. The model will then be described in section 3 along with examples on each stage. The paper concludes with an evaluation of the tool in section 5.

2. BACKGROUND
Automated music production systems generally provide parameter recommendations from the audio signals [2,3]. These return environment control signals to the mix which map directly onto the parameters. Intelligent systems can instead recommend parameters or provide intuitive mappings, rather than directly control parameters [3,4]. These tools aim to reduce the high dimensional problem of mixing into a lower number of dimensions. This is achieved by taking some contextual information, such as a semantic descriptor or user ratings, to build a low-dimensional interface for users to explore. This reduces the burden on engineers without removing the user control, as long as linearity is preserved.

Web-based knowledge stores are readily available to obtain semantic relationships. However instrument-based ontologies are not readily agreed upon [5], with individual instruments being linked to various categories based on creator preference. Therefore there is no exhaustive and peer-reviewed resource. Wikipedia holds a vast amount of information on instrument data which can be queried using a SPARQL end-point at DBPedia. Each page on wikipedia have subject tags, which are subjects and categories containing that page. Each subject connects back to super-subjects and so forth. These are linked using the Simple Knowledge Organisation System (skos) [6]broader tags.

Graphs allow data to be represented as a structure and allow the relationship between vertices to be examined. These vertices can then be classified together by clustering based on distances to other vertices [6], or constructed based on distances to other data points [7].

Music production encompasses more than just mixing decisions, it also requires structuring a mix session. [8] shows sessions with more groupings per track tend to be perceived as better mixes, with higher perceptual ratings. It also shows tracks are grouped together because they are similar, with the group name representing the tracks included, such as ‘vocals’, ‘Drums’ or ‘Guitars’. Tracks can also be grouped based on their acoustic similarity [8,9] or based upon a semantic descriptor, such as the instrument and genre [10,11].

3. AUTOMATIC CHANNEL ROUTING
Automatically deriving a session structure using semantic labels requires knowledge of each instrument in the mix and their relationship to each other. Tracks can be tagged with metadata to identify their instrument. Tracks with the
Figure 1: The full graph for four instruments: Acoustic Guitar, Electric Guitar, Piano and Snare Drum. The root Musical instruments is red, the instruments green and the nodes in the simple paths blue. This gives every possible subject which contains these four instruments to a depth of 4, showing the complexity of linked data stores. Cutting the graph gives a focused scope.

Figure 2: Forced neighbourhood graph G_2 from G_1, depicted in figure 1

3.1. Instrument similarity

The instruments and subjects are stored as vertices, therefore instrument similarity can be calculated using graph theory techniques. The similarity between two vertices can be evaluated by analysing the overlap in their neighbourhoods $\Gamma(v)$ using the Jaccard similarity coefficient [6], equation (1)

$$w(v, u) = \frac{|\Gamma(v) \cap \Gamma(u)|}{|\Gamma(v) \cup \Gamma(u)|}$$

Since G_1 is a relational graph, each instruments neighbourhood will be intentionally small, as each instrument may only be a direct ancestor of some subjects. Therefore, to get the best similarity score, each instrument vertex’s neighbourhood should be made of every subject vertex it has a path to in G_1. This flattened graph is called G_2 and has the same vertices as G_1, $V_2 = V_1$. Edge $\{v_{inst}, v_j\} \in E_2$ if a path between v_{inst} and v_j exists in G_1.

Now each instruments’ neighbourhood is comprised of every subject vertex it could connect to. Subjects which are common have a high number of connections, whilst specific subjects will connect to only a few instruments. However, instruments with similar subjects, and therefore similar neighbourhoods, should be themselves similar to each other. The flattened representation of figure 1 is given in figure 2 and shows the subject relationship to the four instruments. The subjects Organology and Gaiaphones are universally common to the four instruments and have been pushed centrally. Whilst the more specific subjects Keyboard instruments and Amplified Instruments are pushed outwards as they connect to one instrument only (Piano and Electric Guitar respectively).

The Jaccard similarity coefficient w can be calculated for every pair of instrument vertices. A coefficient $w = 1$ means identical neighbourhoods, and $w = 0$ means no
commonality. This similarity measure can be converted into a distance measure by $1 - w$ and stored as an n-by-n matrix D, where n is the number of instrument vertices.

For the example set of four instruments in figures 1 and 2 the distance matrix is shown in Table 1. It is clear that the matrix is symmetric since $w(v_i, v_j) = w(v_j, v_i)$ and $w(v_i, v_i) = 1$. The Acoustic Guitar and Electric Guitar are predictably very similar, with only 5 specific subjects from a union size of 17 subjects. The Piano and Snare Drum are expectedly not very similar to any other of the given instruments.

Hierarchical clustering is then performed on this distance measure, allowing for a distance relationship to be created. The result from the clustering can then be flattened into a set of discrete clusters. The number of clusters, k, represents the number of distinct groups to create. From (11) a suitable measure for k can be $k = \min \left(\left\lfloor \frac{n}{2} - 1 \right\rfloor, 1 \right)$. Using the four instruments, the system recommended two groups: $C_0 = \{\text{Acoustic Guitar, Electric Guitar}\}$ and $C_1 = \{\text{Piano, Snare Drum}\}$.

3.2. Naming groups

The clusters make up the groups, with each instrument contained inside a member of the group. Traditionally groups are named and labelled within a DAW to represent the group, such as ‘Drums’ or ‘Vocals’. The names can be found by identifying the nearest common subject to each of the instruments in the group. This should therefore be a subject which is representative of every instrument within that group.

To identify this subject, the G_1 graph is cut to only include the paths and nodes of the instruments inside the k-th group, such that $G_k^k \subset G_1$. Figure 3 shows this subgraph of G_1 for a cluster containing Acoustic Guitar and Electric Guitar. The distance between two vertices is the number of vertices needed to traverse to reach the target from the source. This is defined as $\delta(v_i, v_j)$. If v_i does not have a path to v_j then $\delta = \infty$.

The nearest common subject vertex for cluster C_k is defined as s_k and can be found using equation (2). Each vertex in G_k^k which is a subject is evaluated. The vertex with the smallest total distance from every instrument vertex v_{inst} in cluster C_k is the nearest common vertex s_k. The group name is then given as the label attributed to this subject. In figure 3 this is the ‘Guitars’ subject and can be confirmed visually from the two instruments in the cluster Acoustic Guitar and Electric Guitar.

$$s_k = \arg\min_j \left[\sum_{v_{inst}} \left(\delta(v_{inst}, v_j) \right) \right]$$ (2)

An output of a 14 track input is depicted in figure 4. Tracks with the same instrument have been grouped together into Electric Guitars, Snare Drum, Drum Kit and Tom-tom drum. The final list of instruments to group are then processed to identify the final layer of groups, giving two supergroups. These groups then route to the master output.

4. CONCLUSION

This paper has presented a novel way of automating the practice of subgrouping in music production by utilising publicly maintained knowledge stores. The results show that using such data can be useful so long as appropriate relationships are examined. These relationships can be analysed and interpreted using graph theory, specifically utilising techniques to measure the similarity between vertices.
Proceedings of the 3rd Workshop on Intelligent Music Production, Salford, UK, 15 September 2017

Figure 4: Complete output from a set of test tracks. 6 groups are recommended for the 14 tracks, judged only from their instrument labels.

For this case, vertex similarity leads to instrument similarity.

5. FURTHER WORK

Evaluating the performance is in itself a subjective problem. There does not exist a single, correct grouping of instruments available, only anecdotal results [10][11]. However if a target or ‘ideal’ graph is identified then graph similarity techniques can be used.

Comparing two graphs together is not a trivial problem, with multiple metrics being available. A popular comparison metric is the size of the maximum common subgraph [12], tries to find the largest portion of two graphs which are isomorphic. In a tree, one false vertex may discard entire leaves, severely minimising the size of sub-graph that can be found.

The graph edit distance (GED) is a suitable measurement for comparing two graphs [12]. GED attempts to find the smallest number of edits required to convert G_A into G_B. Edits usually incorporate inserting and removing of edges and vertices. By attributing a cost to these actions, it is possible to evaluate how similar two graphs are. [12] gives suitable costs for each edit operation.

6. REFERENCES

